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This report describes the reproducibility process and results for the SIGMOD’22 paper GraphZeppelin [5],
which proposes a novel method for finding connected components in large, dynamic, dense graphs.

1 INTRODUCTION
GraphZeppelin [5] addresses the problem of how to efficiently find connected components in
large, dynamic, and dense graphs that exceed the size of the available memory. It does this by
devising a new ℓ0-sampling sketch data structure, CubeSketch, that improves update cost and space
consumption relative to existing ℓ0-sampling sketches. It also uses buffering techniques for better
storage I/O efficiency. The paper is joint work between Rutgers University, Stony Brook University,
and MongoDB.

The paper features two tables comparing CubeSketch to the state-of-the-art ℓ0-sampling sketch
from [1]. Both tables were reproduced to a convincing degree. Furthermore, the evaluation contains
seven figures comparing GraphZeppelin to Aspen [2] and Terrace [3], two recent graph processing
systems that store the whole graph in memory. Five out of the seven figures were reproduced
successfully. In two of the figures, however, Terrace performs much better than reported in the
paper. The reason is that Terrace was accidentally run in debug mode during the evaluation. The
authors were forthright and transparent about this, and they provided comments on how this
affects the conclusions of their paper.

2 SUBMISSION
The authors put their code in an online repository [4]. There is a readme file providing information
about how to install dependencies on different architectures (x86_64 and aarch64). There are also
system setup instructions for memory management including how to use cgroups and a swapfile.
The authors provide a script to compile the code, run the experiments, and produce visual output
that enables a one-to-one comparison with the tables and figures in the paper. We consider this an
ideal submission.

3 HARDWARE AND SOFTWARE ENVIRONMENT
The experiments were reproduced on the same server that the authors used for evaluation in the
paper. The details are at the start of Section 5 in the paper [5].

4 REPRODUCIBILITY EVALUATION
4.1 Process
We cloned the repository into the server and used the script provided by the authors to compile the
code and run the experiments. The authors helped us configure the timeout to 10 hours to make
the experiments run more quickly.

4.2 Results
Tables 4 and 5 in the paper show the speedup and time reduction of the proposed ℓ0-sampling
sketch compared to the state-of-the-art sketch from [1]. Compared to the results in the paper, the
reproduced results exhibit a slightly higher size reduction and a slightly lower speedup. The authors
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clarified that this is because of a space optimization they added after the paper was published. This
optimization slightly compromises speed. Nevertheless, the reproduced results are all within a
factor of 5 − 10% of the ones reported in the paper, so they support the claims made to a satisfying
degree.

Figures 11 to 16 in the paper compare GraphZeppelin to Aspen and Terrace. All but two of these
figures were reproduced successfully. The exceptions are the two figures that showcase Terrace’s
query and ingestion rate performance, namely Figures 12 and 16 (b). The authors advised that the
reason for the discrepancy is that Terrace was accidentally evaluated in debug mode (i.e., with no
compiler optimizations). We appreciate the authors’ candidness about this matter.
In the reproduced Figure 12, Terrace’s ingestion rate is roughly 3-5 times faster in RAM, and

at most 3 times faster on Disk than in the paper. Nevertheless, even with compiler optimizations,
Terrace’s ingestion rate still lags behind that of GraphZeppelin by more than an order of magnitude.
Therefore, the overall conclusion that GraphZeppelin supports faster ingestion is not affected by
this change.

In the reproduced Figure 16 (b), Terrace is approximately three times faster in processing queries
than reported in the paper and outperforms GraphZeppelin throughout the experiment. Hence,
the experiment fails to conclusively support the claim that GraphZeppelin’s query latency on
dense graphs is less than that of Terrace when both systems’ data structures fit completely in
RAM. Nevertheless, the authors maintain in our email exchange the overall conclusion that GZ
outperforms Terrace for dense graphs still holds because of “GraphZeppelin’s much higher ingestion
rate (in RAM, and especially on disk), Terrace’s query latency scales with the graph density, and
Terrace’s poor query latency on disk.”

5 SUMMARY
This report showcases a successful collaboration between the reproducibility committee and the
authors in bringing light to an honest experimental mishap. The nuanced discussion that ensued
suggests that despite this mistake, GraphZeppelin still provides many advantages relative to existing
algorithms for finding connected components in large graphs. This is a testament to the utility of
the SIGMOD Reproducibility Reviewing process in making the scientific output of our community
more robust and credible. It will serve future researchers seeking to work on this problem.
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